Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands.

نویسندگان

  • Marcus Winkler
  • Damian Stephan
  • Susanne Bieger
  • Petra Kühner
  • Felix Wolff
  • Ulrich Quast
چکیده

ATP-sensitive K(+) (K(ATP)) channels are composed of pore-forming subunits (Kir6.x) and of regulatory subunits, the sulfonylurea receptors (SURx). Subtypes of K(ATP) channels are expressed in different organs. The sulfonylureas and glinides (insulinotropes) close the K(ATP) channel in pancreatic beta-cells and stimulate insulin secretion. The insulinotrope binding site of the pancreatic channel (Kir6.2/SUR1) consists of two overlapping (sub)-sites, site A, located on SUR1 and containing Ser1237 (which in SUR2 is replaced by Tyr1206), and site B, formed by SUR1 and Kir6.2. Insulinotropes bind to the A-, B-, or A + B-site(s) and are grouped accordingly. A-ligands are highly selective in closing the pancreatic channel, whereas B-ligands are nonselective and insensitive to the mutation S1237Y. We have examined the binding of insulinotropes representative of the three groups in [(3)H]glibenclamide competition experiments to determine the contribution of Kir6.x to binding affinity, the effect of the mutation Y1206S in site A of SUR2, and the subtype selectivity of the compounds. The results show that the bipartite nature of the SUR1 binding site applies also to SUR2. Kir6.2 as part of the B-site may interact directly or allosterically with structural elements common to all insulinotropes, i.e., the negative charge and/or the adjacent phenyl ring. The B-site confers a moderate subtype selectivity on B-ligands. The affinity of B-ligands is altered by the mutation SUR2(Y1206S), suggesting that the mutation affects the binding chamber of SUR2 as a whole or subsite A, including the region where the subsites overlap.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on Nickel(II)-Pyridoxamine-Imidazole Containing Mixed Ligand Complex Systems

The stability constants of species present in the systems Ni(II)-pyridoxamine(pym)(A) and Ni(II)-pyridoxamine(pym)(A)-imidazole containing ligands(B) [B = imidazole(him),  benzimidazole(bim), histamine(hist) and L-histidine(his)] have been determined pH-metrically using the MINIQUAD computer program. The existence of the species NiAH, NiA and NiA2 was proven for the Ni(II)-pym(A)...

متن کامل

Investigation and Determination the Binding Site of Glycyrrhizin of Liquorice to DNA

Glycyrrhizin(GL), is a triterpenoid saponin found in glychyrrhiza glabra (liquorice). This compound is a frequently used and very effective drug for the treatment of various malignancies. This study was designed to examine the interactions of glycyrrhizin with calf thymus DNA in aqueous solution at physiological conditions. FTIR spectroscopic method was used to determine the ligand binding mode...

متن کامل

Molecular Modeling Studies on Vinblastine Binding Site of Tubulin for Antimitotic agents

Medicinal chemistry depends on many other disciplines ranging from organic chemistry andpharmacology to computational chemistry. Typically medicinal chemists use the moststraightforward ways to prepare compounds. The validation of any design project comes from thebiological testing.Studies of the binding site of vinblastine by a single cross—linking experiment identified it asbeing between resi...

متن کامل

Optimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors

To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...

متن کامل

Directed Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway

Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 322 2  شماره 

صفحات  -

تاریخ انتشار 2007